For the plastics machinery industry
Adjustable compression thermocouple
Model TC47-AC

Applications
- Plastics and rubber industry
- For direct installation into the process
- Dies for extrusion profiles
- Packaging
- Open air temperature detection

Special features
- The sensor has a pre-determined probe length and mounted into the process
- The thermocouple sensors are available with a variety of hold down mechanisms
- Sheath material ranges from stainless steel, corrosion resistant and high temperature oxidation resistant alloys
- With or without stainless steel overbraid or interlocking flexible armour
- Tube and wire construction

Description
The TC47-AC adjustable compression thermocouple is a general purpose temperature sensor designed to suit all applications where metal sheathed thermocouples are required. An extensive range of elements and process connections can be individually selected for the appropriate application. With the flexibility of assorted diameters and pre-determined immersion lengths, the model TC47-AC thermocouple can be used in a wide variety of easily accessible locations.

The adjustable compression fitting allows the sensor to be secured at a specific length into the process.

The adjustable compression thermocouple is a tube and wire design and held in place with a compression fitting. They are especially suited for applications where the metal sensor tip is securely fastened into the media.

The temperature sensor can be modified to suit specific application as required.
Sensor

Sensor type
- Type J (Fe-CuNi)
- Type L (Fe-CuNi)
- Type K (NiCr-Ni)
- Type T (CuNi)
- Others on request

Temperature range

<table>
<thead>
<tr>
<th>Class</th>
<th>Temperature range</th>
<th>Limiting error</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-40...+375 °C</td>
<td>±1.5 °C</td>
</tr>
<tr>
<td>2</td>
<td>-40...+333 °C</td>
<td>±2.5 °C</td>
</tr>
<tr>
<td>1</td>
<td>+375...+750 °C</td>
<td>±0.0040 °C</td>
</tr>
<tr>
<td>2</td>
<td>+333...+750 °C</td>
<td>±0.0075 °C</td>
</tr>
</tbody>
</table>

Number of sensors
- 2-wire single circuit
- 4-wire dual circuit

Classification tolerance
- European Class 1 and 2 per DIN EN 60584-2
- DIN 43714 and DIN 43713: 1991
- International (IEC) DIN 43722: 1994
- JISC 1610: 1981
- NFC 4232
- BS 1843
- North American Class 1 and 2
- ISA standard and special per ANSI MC 96.1 - 1982

Measuring point
- Isolated (ungrounded)
- Non isolated (grounded)

Tube and wire construction
The sheath section of the sensor is a tube and wire design. This consists of a stainless steel outer sheath with thermocouple wire drawn through it and secured into place. Due to the construction design and styles, these sensors can be applied in areas that are not difficult to access.

Options

- Lengths and diameters are customer specified
- Calibration classifications are customer specified
- Tag identification (customer specific identification number)
- Selectable accuracy tolerance
- Mounting options customer specified

Sensor tip designs

In the standard version a sensor is incorporated which is appropriate for the selected measuring range.
Model TC47-AC can be constructed in two different ways:

ungrounded measuring point (hot junction) isolated

- thermocouple
- measuring point
- sheath

grounded measuring point (hot junction) non isolated

- thermocouple
- measuring point
- sheath

Basic values and limiting errors

A cold junction temperature of 0 °C is taken as the basis for the definition of the thermocouple's sensor limiting error.

<table>
<thead>
<tr>
<th>Temperature (ITS 90) °C</th>
<th>Limiting error DIN EN 60584</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>±2.5</td>
</tr>
<tr>
<td>200</td>
<td>±2.5</td>
</tr>
<tr>
<td>400</td>
<td>±3.0</td>
</tr>
<tr>
<td>600</td>
<td>±4.5</td>
</tr>
<tr>
<td>800</td>
<td>not defined</td>
</tr>
</tbody>
</table>

Types J, L DIN EN 60584, ANSI MC 96.1

<table>
<thead>
<tr>
<th>Class</th>
<th>Temperature range</th>
<th>Limiting error</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-40 ... +375 °C</td>
<td>±1.5 °C</td>
</tr>
<tr>
<td>2</td>
<td>-40 ... +333 °C</td>
<td>±2.5 °C</td>
</tr>
</tbody>
</table>

Types K DIN EN 60584, ANSI MC 96.1

<table>
<thead>
<tr>
<th>Class</th>
<th>Temperature range</th>
<th>Limiting error</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-40 ... +125 °C</td>
<td>±0.5 °C</td>
</tr>
<tr>
<td>2</td>
<td>-40 ... +133 °C</td>
<td>±1.0 °C</td>
</tr>
</tbody>
</table>

Type T DIN EN 60584, ANSI MC 96.1

<table>
<thead>
<tr>
<th>Class</th>
<th>Temperature range</th>
<th>Limiting error</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-40 ... +125 °C</td>
<td>±0.5 °C</td>
</tr>
<tr>
<td>2</td>
<td>-40 ... +133 °C</td>
<td>±1.0 °C</td>
</tr>
</tbody>
</table>

1) |t| is the value of the temperature in °C without consideration of the sign.

Sheath material

- Stainless steel
 - up to 1200 °C
 - good corrosion resistance with aggressive media

- Ni-alloy 2.4816 (Inconel 600)
 - standard material for applications which require specific corrosion resistance properties, exposure to high temperatures and resistant to induced stress

- Others on request
Lead wire

A variety of insulating materials are available to adapt to different prevailing process conditions. The lead wire termination end can be supplied ready for connection or fitted with a plug as an option.

- Thermocouple, fit to process connection
- Lead extension cross section: min. 0.22 mm² (24 awg)
- Insulation material: fibreglass, Kapton, PTFE or PVC
- Other options available

Process connections

The thermocouple is fitted with or without a compression fitting that is customer specific. These various compression fittings are individually specified.

Lead wire coverings

- Stainless steel overbraid (no tracer)
 Stainless steel overbraid is by far the most common of the overbraids and is available on almost all thermocouples and extension duplex wire constructions. While highly resistant to corrosion, stainless steel is able to maintain a continuous operating temperature of 1400 °F (760 ºC).

- Stainless steel overbraid (with tracer)
 Resembles stainless steel with a colour coded fibre tracer identifying the calibration type with minimum braid coverage of 85%.

- Tinned copper overbraid
 Although similar in some characteristics to stainless steel, is a more economical alternative. This product offers an improved feature of shielding against static noise (if it is properly insulated and grounded) with a continuous operating temperature of 400 °F (204 ºC).

- Interlocking flexible stainless steel armour
 Is a half oval armour applied in a spiral wrap fashion. In addition to having similar characteristics to the overbraids, stainless steel armour maintains better crush and piercing resistant properties. It can operate in higher temperature 1400 °F (760 ºC). This covering is a non-magnetic corrosive, and piercing resistant shield. Resistant to rusting in outdoor applications.

Operating temperatures

The following temperatures limits apply to the conventional connecting lead wire.

- Fibreglass: -50 ... +482 °C
- Kapton: -25 ... +260 °C
- PTFE: -50 ... +260 °C
- PVC: -20 ... +105 °C

Kapton / Kapton

500 °F (260 ºC)
Polyimide tape insulation for improved electrical properties and high temperature applications.

500 °F (260 ºC)
Polyimide tape jacket for excellent abrasion and cut through properties and very high resistance to moisture and chemicals.

PVC / PVC

221 °F (105 ºC)
PVC insulation for economy, durability and mechanical strength.

221 °F (105 ºC)
PVC jacket for economy, durability and mechanical strength. It is also tough and resistant to flame, abrasion and moisture.

Fibreglass / Fibreglass

900 °F (482 ºC)
Wrapped fibreglass insulation for improved moisture and abrasion resistance at high temperatures.

900 °F (482 ºC)
Braided fibreglass for additional flexibility and abrasion resistance at high temperatures.

PTFE / PTFE

500 °F (260 ºC)
PFA insulation for improved electrical properties and high temperature applications.

500 °F (260 ºC)
PFA jacket for chemical inertness to solvents, acids and oils.
Plug (option)

TC47-AC thermocouple can be supplied with plugs attached to the conductors. The maximum permissible temperature at the plug is 85 °C.

The following options are available:

- **Spade lugs**
 (not suitable for versions with bare connecting wires)

- **Lemosa plug size 1 S** (male)
- **Lemosa plug size 2 S** (male)

- **Lemosa plug size 1 S** (female)
- **Lemosa plug size 2 S** (female)

- **Screw-in-plug, Binder** (male)

- **Screw-in-plug, Binder** (female)

- **Standard thermo plug 2-pin** (male)
- **Miniature thermo plug 2-pin** (male)

- **Standard cable clamp** (option with thermo plug)
- **Miniature cable clamp** (option with thermo plug)

- **Standard thermo plug 2-pin** (female)
- **Miniature thermo plug 2-pin** (female)
Electrical connection

Colour codes of the wire ends see table below

Single thermocouple

Dual thermocouple

Thermo plug
Positive and negative terminal are marked. Two thermo connectors are used with dual thermocouples.

Other connector plugs and pin assignments on request.

Thermocouple and extension wire colour codes

<table>
<thead>
<tr>
<th>National Standard</th>
<th>ANSI/MC 96.1 T/C Grade</th>
<th>ANSI/MC 96.1 Extension Grade</th>
<th>BS 1643</th>
<th>DIN 43714</th>
<th>IEC 60160-108</th>
<th>NF C42-323</th>
<th>IEC 584-3 T/C Grade</th>
<th>IEC 584-3 Intrinsically Safe</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>J</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
IEC tolerance values per EN 60584-2

<table>
<thead>
<tr>
<th>Thermocouple type</th>
<th>Temperature range</th>
<th>Tolerance class 1</th>
<th>Tolerance class 2</th>
<th>Tolerance class 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-40 ... -125 °C</td>
<td>±0.5 °C</td>
<td>±1.0 °C</td>
<td>±1.0 °C</td>
</tr>
<tr>
<td></td>
<td>+125 ... +350 °C</td>
<td>+133 ... +350 °C</td>
<td>-200 ... -67 °C</td>
<td></td>
</tr>
<tr>
<td></td>
<td>±0.004 °C</td>
<td>±0.0075 °C ltl</td>
<td>±0.015 °C ltl</td>
<td></td>
</tr>
<tr>
<td>J</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-40 ... +375 °C</td>
<td>±1.5 °C</td>
<td>±2.5 °C</td>
<td>-176 ... +40 °C</td>
</tr>
<tr>
<td></td>
<td>+375 ... +750 °C</td>
<td>+333 ... +750 °C</td>
<td>-200 ... -67 °C</td>
<td></td>
</tr>
<tr>
<td></td>
<td>±0.004 °C</td>
<td>±0.0075 °C ltl</td>
<td>±0.015 °C ltl</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-40 ... -125 °C</td>
<td>±1.5 °C</td>
<td>±2.5 °C</td>
<td>±2.5 °C</td>
</tr>
<tr>
<td></td>
<td>+125 ... +350 °C</td>
<td>+133 ... +350 °C</td>
<td>±1.0 °C</td>
<td>±0.004 °C</td>
</tr>
<tr>
<td></td>
<td>±0.004 °C</td>
<td>±0.0075 °C ltl</td>
<td>±0.015 °C ltl</td>
<td></td>
</tr>
<tr>
<td>K or N</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-40 ... -125 °C</td>
<td>±1.5 °C</td>
<td>±2.5 °C</td>
<td>±2.5 °C</td>
</tr>
<tr>
<td></td>
<td>+125 ... +350 °C</td>
<td>+133 ... +350 °C</td>
<td>±1.0 °C</td>
<td>±0.004 °C</td>
</tr>
<tr>
<td></td>
<td>±0.004 °C</td>
<td>±0.0075 °C ltl</td>
<td>±0.015 °C ltl</td>
<td></td>
</tr>
<tr>
<td>R or S</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0 ... +1100 °C</td>
<td>±1100 °C</td>
<td>±1100 °C</td>
<td>±1100 °C</td>
</tr>
<tr>
<td></td>
<td>±1.0 °C</td>
<td>±1.5 °C</td>
<td>±1.5 °C</td>
<td>±1.5 °C</td>
</tr>
<tr>
<td></td>
<td>±0.004 °C</td>
<td>±0.0075 °C ltl</td>
<td>±0.015 °C ltl</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>±870 ... +1700 °C</td>
<td>±0.004 °C</td>
<td>±0.0075 °C ltl</td>
<td>±0.015 °C ltl</td>
</tr>
</tbody>
</table>

ASTM tolerance values (ASTM E230)

<table>
<thead>
<tr>
<th>Thermocouple type</th>
<th>Standard limits (whichever value is greater)</th>
<th>Special limits (whichever value is greater)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>Temperature range 0 ... +370 °C</td>
<td>0 ... +370 °C</td>
</tr>
<tr>
<td></td>
<td>±1 °C or ±0.75 %</td>
<td>±0.5 °C or 0.4 %</td>
</tr>
<tr>
<td></td>
<td>±200 °C or 0 °C</td>
<td>±1 °C or ±0.75 %</td>
</tr>
<tr>
<td></td>
<td>±1.0 °C or ±1.5 %</td>
<td>±1.0 °C or ±1.5 %</td>
</tr>
<tr>
<td>J</td>
<td>Temperature range 0 ... +760 °C</td>
<td>0 ... +760 °C</td>
</tr>
<tr>
<td></td>
<td>±2.2 °C or ±0.75 %</td>
<td>±4.0 °C or ±0.75 %</td>
</tr>
<tr>
<td></td>
<td>±286 °C or +32 °F</td>
<td>±1.0 °C or ±0.75 %</td>
</tr>
<tr>
<td>E</td>
<td>Temperature range 0 ... +1260 °C</td>
<td>0 ... +1260 °C</td>
</tr>
<tr>
<td></td>
<td>±2.2 °C or ±0.75 %</td>
<td>±4.0 °C or ±0.75 %</td>
</tr>
<tr>
<td></td>
<td>±286 °C or +32 °F</td>
<td>±1.1 °C or ±0.4 %</td>
</tr>
<tr>
<td>K</td>
<td>Temperature range 0 ... +1260 °C</td>
<td>0 ... +1260 °C</td>
</tr>
<tr>
<td></td>
<td>±2.2 °C or ±0.75 %</td>
<td>±4.0 °C or ±0.75 %</td>
</tr>
<tr>
<td></td>
<td>±286 °C or +32 °F</td>
<td>±1.1 °C or ±0.4 %</td>
</tr>
<tr>
<td>N</td>
<td>Temperature range 0 ... +1480 °C</td>
<td>0 ... +1480 °C</td>
</tr>
<tr>
<td></td>
<td>±2.2 °C or ±0.75 %</td>
<td>±4.0 °C or ±0.75 %</td>
</tr>
<tr>
<td></td>
<td>±286 °C or +32 °F</td>
<td>±1.1 °C or ±0.4 %</td>
</tr>
<tr>
<td>R or S</td>
<td>Temperature range +870 ... +1700 °C</td>
<td>+870 ... +1700 °C</td>
</tr>
<tr>
<td></td>
<td>±870 ... +1700 °C</td>
<td>±870 ... +1700 °C</td>
</tr>
<tr>
<td></td>
<td>±0.5 %</td>
<td>±0.5 %</td>
</tr>
<tr>
<td>B</td>
<td>Temperature range +870 ... +1700 °C</td>
<td>+870 ... +1700 °C</td>
</tr>
<tr>
<td></td>
<td>±0.5 %</td>
<td>±0.5 %</td>
</tr>
</tbody>
</table>
Ordering information

The adjustable compression thermocouple is suited for application where the probe is required to be fixed and secured at a specific length. The junction tip is submersed into a pre-determined bore or into the medium. This style is held in position with a compression fitting, or can be secured by a set screw.

When ordering choose from each category.

Adjustable compression version
- Straight
- 45° bend
- 90° bend

Junction
- Grounded (unisolated)
- Ungrounded (isolated)

Probe diameter
- 3/16"
- 1/4"
- 3/8"
- 4 mm
- 6 mm
- 8 mm
- Others on request

Probe length
- Standard: 100 mm (4")
- Others on request

Compression fitting material
- Brass
- Stainless steel
- None

Thread size
- Thread size on request

Lead length
- 500 mm
- 1000 mm
- 1500 mm
- 2000 mm
- 2500 mm
- Others on request

Lead wire
- Fibreglass / fibreglass
- PTFE / PTFE
- PVC / PVC
- Kapton / Kapton
- Others on request

Lead wire covering
- None
- Stainless steel overbraid (no tracer)
- Stainless steel overbraid (with tracer)
- Tin copper overbraid
- Interlocking flexible armour

Termination at lead end
- Bare ends
- Standard thermo plug 2-pin (male)
- Standard plug with cable clamp (male)
- Lemosa plug size 1S (male)
- Lemosa plug size 2S (male)
- Screw-in plug, Binder (male)
- Others on request

Calibration type
- J ANSI MC96.1 red ⊖ white ⊕
- K ANSI MC96.1 red ⊖ yellow ⊕
- T ANSI MC96.1 red ⊖ blue ⊕
- J IEC 584-3 white ⊖ black ⊕
- K IEC 584-3 white ⊖ green ⊕
- T IEC 584-3 white ⊖ brown ⊕
- J DIN 43714 blue ⊖ red ⊕
- K DIN 43714 green ⊖ red ⊕
- T DIN 43714 brown ⊖ red ⊕